選擇流量計的通徑應按被測管道使用的流量范圍和被選流量計的上限流量和下限流量來選配,因為流速選擇過低,管徑粗投資大;流速過高則輸送功率大,增加運行費用。移動式鐵路罐車檢定裝置大部分流量計上限流量的流速接近或略高于管道經濟流速,因此流量計通徑與管徑相同的可能性較大,移動式鐵路罐車檢定裝置安裝比較方便,如不相同也不應相差太多,一般相鄰一檔規格,采用變徑管連接。
不同原理的流量計對安裝要求有很大不同。例如差壓式、渦輪式流量計需要長的上游直管段,移動式鐵路罐車檢定裝置有些流量計則無此要求或要求較低。有些流量計需要考慮安裝位置與介質流動方向、維護空間、安裝方向等。移動式鐵路罐車檢定裝置流量計計量性能受安裝狀況的影響很大,流量計誤差較大的原因,有一部分是安裝不善造成的。安裝方面考慮的因素有:流量計的安裝方向、原油流動方向、上下游直管段、閥門位置、振動、電磁干擾和維護空間等。
半導體制造業、生物工程、精細化工等的興起,使流量測量向低端延伸,小流量計流量的要求在上世紀80∽90年代凸顯起來。何謂小流量?業界尚無定義和界限,小流量因應用領域而異是一個模糊的概念。移動式鐵路罐車檢定裝置管道小流量測量體現于管徑小和流速低兩個層次,就流程工業而言,習慣上DN10甚至DN15以下管徑流量測量稱之小流量測量,移動式鐵路罐車檢定裝置通常其流量值液體為1L/min或0.06m3/h以下,流量儀表滿度流量時的流速低于0.1m/s。
利用流量計直接測量河流的流量。流量計的種類很多,主要有壓差式、電磁式、流槽式和堰式流量計等類型。移動式鐵路罐車檢定裝置可根據實際流量的流量范圍和測試精度要求選擇使用。本法簡單易行,測量精度較高,適用于河流量較小的河流。移動式鐵路罐車檢定裝置但溢流口與受納水體應有適當落差或能用導水管形成誤差。通過測量水流截面積,以流速儀測量河水流速,計算河流量。測量時需要根據渠道深度和寬度確定點位垂直測點數和水平測點數。
垂直上升管中的氣液兩相流動結構。實驗研究證明,移動式鐵路罐車檢定裝置在垂直上升管中的氣液兩相流動,其基本結構有下列五種:細泡狀流動,結構、彈狀流動結構、塊狀流動結構、帶纖,垂直上升氣液兩相流的流動結構維的環狀流動結構和環狀流動結構。彈狀流動結構 這五種流動結構分別具有下列特點。移動式鐵路罐車檢定裝置塊狀流動結構;帶纖維的環狀流動結構。
出于流量是一個動態量,流量測量是一項復雜的技術。從被測流體來說,包括氣體、液體和混合流體這三種具有不同物理特性的流體;從測量流體流量時的條件來說,移動式鐵路罐車檢定裝置又是多種多樣的,如測量時的溫度可以從高溫到低溫,測量時的壓力可以從高壓到低壓;移動式鐵路罐車檢定裝置被測流量的大小可以從微小流量到大流量;被測流體的流動狀態可以是層流、紊流等等。