超聲流量計能得到的測量精度同管徑有關,管徑越大,有可能得到的精度越高。有的供應商能提供帶測量管的多聲道時差式超聲流量計,精度高可達0.15級,但價格也相應升高。移動式常壓音速噴嘴法氣體流量標準裝置既可測量導電液體,如水等,也可測量不導電液體。移動式常壓音速噴嘴法氣體流量標準裝置現在有很多單位添置數臺攜帶式(時差法)超聲流量計用于現場較大口徑液體流量計比對,一般都收到較好的效果。在DN≥150mm、v≥0.3m/s時,精度可達±2%R。
按測量流體的種類分類盡管流量測量的流體千差萬別,還是可以將其主要分為液體、氣體、蒸汽、氣液兩用型等。還可以有很多更細致的劃分,如液體可以分為水和油,氣體可以分為常壓和高壓等。移動式常壓音速噴嘴法氣體流量標準裝置大多數流量計都可以既用于氣體測量又用于液體測量,但電磁流量計只適用于水等導電液體的測量;移動式常壓音速噴嘴法氣體流量標準裝置而音速噴嘴則只用于氣體流量測量;在蒸汽流量測量上主要采用渦街流量計、差壓流量計,以往也有采用分流旋翼式流量計的。
流量測量是一門復雜、多樣的技術,這不僅由于測量確度的要求越來越高,而且測量對象復雜多樣。移動式常壓音速噴嘴法氣體流量標準裝置如流體種類有氣體、液體、混相流體,流體工況有從高溫到低溫的溫度范圍,從高壓到低壓的壓力范圍,既有低粘度的液體,也有粘度高的液體,而流量范圍更是懸殊,移動式常壓音速噴嘴法氣體流量標準裝置微小流量只有每小時數毫升,而大流量可能每秒就達數萬立方米。而脈動流、多相流更增加了流量測量的復雜性。另一方面,這種復雜性和多樣性人們對流量測量儀表的應用研究。
回顧科技發展歷程,計量一直和創新密切相關。一方面計量正是建立在新科學理論和先進的技術基礎上的,很多新發現的物理現象和理論就是被用于新的計量基準。移動式常壓音速噴嘴法氣體流量標準裝置原子噴泉理論孕育了原子噴泉鐘的誕生,奠定了原子時的基礎,將時間基準提升到3000萬年不差1秒的水平;飛秒激光光梳技術架起了光頻與微波頻率的橋梁,將光鐘變為現實,從而有可能將時間頻率標準的不確定度再提高10-18量級。移動式常壓音速噴嘴法氣體流量標準裝置近幾十年里,共有14位計量科學家獲得諾貝爾物理學獎。
不同原理的流量計對安裝要求有很大不同。例如差壓式、渦輪式流量計需要長的上游直管段,移動式常壓音速噴嘴法氣體流量標準裝置有些流量計則無此要求或要求較低。有些流量計需要考慮安裝位置與介質流動方向、維護空間、安裝方向等。移動式常壓音速噴嘴法氣體流量標準裝置流量計計量性能受安裝狀況的影響很大,流量計誤差較大的原因,有一部分是安裝不善造成的。安裝方面考慮的因素有:流量計的安裝方向、原油流動方向、上下游直管段、閥門位置、振動、電磁干擾和維護空間等。
垂直上升管中的氣液兩相流動結構。實驗研究證明,移動式常壓音速噴嘴法氣體流量標準裝置在垂直上升管中的氣液兩相流動,其基本結構有下列五種:細泡狀流動,結構、彈狀流動結構、塊狀流動結構、帶纖,垂直上升氣液兩相流的流動結構維的環狀流動結構和環狀流動結構。彈狀流動結構 這五種流動結構分別具有下列特點。移動式常壓音速噴嘴法氣體流量標準裝置塊狀流動結構;帶纖維的環狀流動結構。